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Introduction 
 

The question whether people can mentally process multiple pieces of 
information in parallel or in series has intrigued psychologists since 
the 19th century. Parallel and serial systems and models are very 
important special cases of the issue of mental architectures.  We 
pause to observe that the “architecture” part is not meant to imply 
rigidity.  In some situations, individual differences and differences 
across conditions can emerge (e.g., Townsend & Fific’, 2004). 
 
Many of the authors of this honorific volume, including the figure of 
our tribute for his long and distinguished career, Professor Hans-
Georg Geissler, have contributed substantially to the literature on 
mental architecture and related issues. There are now hundreds of 
experimental and theoretical works bearing on these topics and even 
a brief survey is outside our present scope.  However, the reader is 
encouraged to explore them more deeply in recent reviews (e.g., 
Algom, Eidels, Hawkins, Jefferson, & Townsend, 2015; Townsend, 
Yang, & Burns, 2011). Although much has been learned over the 
years about parallel and serial processes, it seems there is always 
more to understand.   
 
Now, general models of either ilk, despite their seeming simplicity, 
can range over a terrain of rather immense complexity.  Only 
mathematical specification of their parallel vs. serial nature must be 
invariant (see, e.g., Townsend & Ashby, 1983; Townsend & Wenger, 
2004).  Nonetheless, there are specific classes which seem to be 
canonical in their parallel or serial purity, so to speak.  In fact, some 
authors have tended to confine their notions of serial or parallel 
nature to only these limited versions.  We have never adhered to that 
philosophy but we do believe they warrant a special echelon in the 
taxonomy of mental architectures. 



 
We refer to the canonical parallel class as standard parallel models 
and the canonical serial class as standard serial models (see, e.g., 
Algom, Eidels, Hawkins, Jefferson, & Townsend, 2015; Townsend & 
Wenger, 2004). 
 
Immense efforts have been expended, both theoretically and 
experimentally, in the quest to test serial from parallel perceptual, 
cognitive and action systems apart from one another.  It has turned 
out that despite the relative simplicity and diametrically opposed 
arrangement of serial vs. parallel architectures, experimental 
identification has proven to be quite challenging.   
 
In fact, in a number of popular experimental designs intended to test 
serial models against parallel models, it can be shown that the 
models are mathematically equivalent (e.g., Townsend, 1972; 
Townsend & Ashby, 1983; Townsend & Wenger, 2004).  This chapter 
does not touch on, or review any of this literature. 
 
On the other hand, a number of experimental methods have been 
developed that are capable of assessing mental architectures at a 
deeper level (e.g., Schweickert, 1978; Schweickert & Townsend, 
1989; Townsend, 1990; Townsend & Wenger, 2004). The present 
chapter is closer to this train of research in that it asks about 
fundamental properties that differentiate certain important sub-
classes of parallel and serial systems.  However, it must be 
recognized that any empirical methods growing out of this work will 
not be so general as some of those presented in the above papers. 
 
Thus, instead of searching for models of the alternative class of 
models that perfectly or imperfectly mimic the targeted class (begun 
in Townsend, 1969, 1972, 1974, and completed in Townsend, 1976a; 
Townsend & Ashby, 1983), we seek to understand the diversity of 
certain central properties.  Although our mathematical discoveries are 
specialized to 𝑛 = 2 processes (items, channels, etc.), we put down 
our foundational definitions for arbitrary 𝑛. 
 
All serial models assume that at every moment, only one process is 



being activated (Figure 1(a)). In the general case, the order of 
processing the n items can possess a probability distribution.  So if n 
processes are considered, there are n! ways to arrange the order of 
them. The parallel models assume that every process starts 
simultaneously (Figure 1(b)) but they can terminate at different 
moments.  Typically, any of the n! orders could also occur according 
to parallel processing models. 
 
A special instance of ordering in a serial system would assign a single 
order to occur with probability 1.  A parallel system cannot, due to its 
mathematical constraints, be equivalent to that special type of serial 
processing although it could mimic it to an arbitrarily degree of 
approximation (see, e.g., Townsend, 1972; Townsend & Ashby, 
1983).   
 
One central feature of a standard serial model is the axiom that the 
successive processing times are stochastically independent.  A central 
assumption of standard parallel models is that their processing times 
are stochastically independent.  However, the generic statistic 
associated with the serial processing times is called the 
intercompletion time.  In general, parallel models, even the standard 
variety, will not predict stochastically independent intercompletion 
times though special cases can be made to do so (as in Townsend & 
Ashby, 1983, Chapter 4).   
 
On the other hand, the generic statistic associated with the parallel 
processing time random variable is the total completion time, which 
can be recorded, of course, even when processing is serial.  Serial 
models will not be expected to, in general, predict stochastically 
independent total completion times. 
 
What standard parallel models predict in the way of intercompletion 
times, and what standard serial models predict for total completion 
times, are the subjects of our enquiry. 
 
We now proceed to construct more quantitatively exact definitions. 
The traditional manner of constructing and describing mental 
architectures is through an event space (more formally, sigma space) 



based on the times of completion of items (used in a generic sense) 
across time (e.g., Townsend, 1972, 1974).  However, deeper 
characterizations and differentiation of architectures can be found 
with event spaces that take into account finer grained state spaces 
associated with the items or processes.  For instance, if items can be 
considered to be constituted by sets of features, then serial and 
parallel models become more diverse and, in specific experimental 
paradigms, less subject to model mimicking dilemmas (see, e.g., 
Townsend, 1976b, Townsend & Evans, 1983; Snodgrass & 
Townsend, 1980; Townsend & Ashby, 1983, Chapter 13).  In the 
present study, we adhere to the traditional approach, but statements 
about parallel—serial mimicry will sometimes take the deeper 
approach into account. 
 

 
 

Figure 1. Examples of (a) a serial model and (b) a parallel model. 
 

1. Terminology 
 

Let us denote the processing time for process j as 𝑧%, where 𝑗	 =
	1, … , 𝑛. In this paper, the term “processing time” is short for 
processing time of a process. The “j” in the term “process j” 
represents the identity of a process. We also use the term “the j-th 
process” in this paper to denote a process that is completed at j-th 
position. The “j ” in the term “the j-th process” indicates that there 
are j-1 processes that have finished before that process. In Figure 1, 
process j and the j-th process are the same process. One should 



keep in mind that they are usually different. In general, process j 
may be the i-th process to complete, where 𝑖 ≠ 𝑗.  
 
Stage: Stage j spans the time interval from the completion of the (j-
1)-th process to the completion of the j-th process. For serial models, 
each process corresponds to a stage. In Figure 1(a), process 1 is 
stage 1, process 2 is stage 2,…, and process n is stage n. For parallel 
models, each stage covers a part of a process. In Figure 1(b), stage j 
starts from the completion of process j-1 and terminates at the 
moment that process j is complete.  
 
Intercompletion time: The intercompletion time 𝑇% is the time that 
is spent for stage j. In this paper we also call 𝑇% the 𝑗-th 
intercompletion time. For the serial models, each processing time is 
an intercompletion time as anticipated in the preceding paragraph: In 
Figure 1(a), 𝑇/ = 𝑧/, 𝑇0 = 𝑧0,…, 𝑇1 = 𝑧1. In contrast, for the parallel 
model in Figure 1(b), 𝑇/ = 𝑧/, 𝑇0 = 𝑧0 − 𝑧/,…, 𝑇1 = 𝑧1 − 𝑧13/.  
 
Total completion time: The total completion time 𝕋% is the time 
that is consumed from the onset of the model to the moment that 
process j is complete. For the serial model in Figure 1(a), 𝕋/ = 𝑧/, 
𝕋0 = 𝑧/ + 𝑧0,…, 𝕋1 = 𝑧/ + 𝑧0 + ⋯+ 𝑧1. For parallel models, the total 
completion time is the processing time. In Figure 1(b), 𝕋/ = 𝑧/, 𝕋0 =
𝑧0,…, 𝕋1 = 𝑧1. 
 
Note that the intercompletion time 𝑇% is defined with respect to the 
stage in the processing order, whereas the total processing time for a 
process 𝕋% is defined with respect to the identity of a process. 
 

2. Serial Models and Parallel Models 
 

Serial models: One can represent the serial models using the 
product of the probability of a certain serial order of processes and 
the joint density function of intercompletion times conditioned on the 
order.  

𝑃 𝐼 𝑓: 𝑇/ = 𝑡/, … , 𝑇1 = 𝑡1 	𝐼 = (𝑖/, … , 𝑖1) .  
Here 𝑡/, … , 𝑡1 are realizations of 𝑇/, … , 𝑇1, (𝑖/, … , 𝑖1) ∈ Perm(𝑛), where 



Perm(𝑛) is the set of all permutations of the naturals from 1 to n, 
and 𝑃(𝐼) is the probability of a particular permutation 𝐼 = (𝑖/, … , 𝑖1). 
For the serial models, the permutation I means that the model starts 
with process 𝑖/ and is connected by the onset of process 𝑖0 after 
process 𝑖/ is complete, and so on.  
 
Parallel models: Parallel models can be written as the joint density 
function of total completion times of processes: 

𝑓C 𝕋/ = 𝜏/, … , 𝕋1 = 𝜏1; 𝐼 ,  
where 𝜏/, … , 𝜏1 are realizations of 𝕋/,… , 𝕋1. For the parallel models, 
the permutation I means that all the processes start simultaneously 
but process 𝑖/ terminates first, process 𝑖0 terminates second, and so 
on.   
 

3. Assumptions 
 
Scientists can make further restrictive but still quite general and 
reasonable assumptions about the serial models and parallel models 
to differentiate the two types of models. Perhaps the most widely 
used stipulation is that of selective influence. This notion was firstly 
proposed by Sternberg (1969) in his additive factors method. It 
states that manipulation of each factor only influences the process 
that is associated with that factor. System factorial technology (SFT) 
(Townsend & Nozawa, 1995) was developed to characterize different 
types to parallel and serial models based on that assumption. One 
can diagnose the mental arrangements according to the interaction 
contrast of survival functions of reaction time. This technology is 
further explored by other researchers (Schweickert, Giorgini, & 
Dzhafarov, 2000; Dzhafarov, Schweickert, & Sung, 2004; Yang, Fific’, 
& Townsend, 2013; Zhang & Dzhafarov, 2015).  
 
A limitation of SFT is that it has to be applied in the complete 
factorial design, in which each factor has two or more levels and the 
requirement of stochastic dominance has to be met as well. Not 
every experiment affords such a manipulation.  Recent reviews 
mentioned earlier delve into such matters in more depth and also 
survey other methods of identifying architectures and related 
mechanisms (e.g., Algom, Eidels, Hawkins, Jefferson, & Townsend, 



2015; Townsend, Yang, & Burns, 2011; Townsend & Wenger, 2004). 
 
Another candidate assumption that can be imposed to the 
investigated system is within stage independence. This assumption 
states that the processes are independently executed within each 
stage. Since there is only one process in each stage in the serial 
model, this assumption is moot in the class of serial models. Although 
within stage independence is an important characteristic to know 
about, it turns out that within stage dependent models can be 
mathematically transformed to within stage independent models (e.g., 
see Rao, 1992, pp. 162-163).  Thus, such models cannot be 
discriminated in the absence of observability of the within stage 
dependencies. 
 
Next, one can consider the processing time independence assumption. 
That is, the processing time of a process is independent of another. 
For the serial models, processing time independence is equivalent to 
across stage independence since the actual processing times are 
equivalent to the intercompletion times. In contrast, for the parallel 
models, processing time of an item or channel is equivalent to the 
interval from the very beginning of processing (which we may recall, 
entails that every parallel process begins simultaneously), until that 
individual channel is finished.  This is a statistic known generically as 
the total completion time.  Independence of processing times, 
between say, 2 channels, is tantamount to independence of their 
total completion times. 
 

4. Standard Serial Models and Standard Parallel Models 
 
With the assumption of independently and identically distributed (iid) 
processing times, the serial models are named standard serial models 
and parallel models are named standard parallel models.  
 
Suppose there are only two processes 𝑎 and 𝑏 in the models. The 
standard serial models are then named standard two-process serial 
models and the standard parallel models are named standard two-
process parallel models.  
 



Let us denote the processing times of processes 𝑎 and 𝑏 as 𝑧H and 𝑧I 
(recall that they are iid) and the density function as 𝑓. The 
corresponding distribution function is labeled as 𝐹. The survival 
function, the hazard function, and the cumulative hazard function are 
represented as  

𝑆 = 1 − 𝐹,	

ℎ =
𝑓
𝑆 ,	

𝐻 = ℎ(𝑡)
N

O
𝑑𝑡 = −ln	[𝑆 𝑥 ]. 

 
Standard two-process serial models: Since two processes are 
under consideration, the model can be decomposed into two stages. 
If process 𝑎 is executed earlier than process 𝑏, then process 𝑎 is 
stage 1. If process 𝑎 is executed later than process 𝑏, then process 𝑏 
is stage 1 (Figure 2). 
 

 
Figure 2. Possible process arrangements in a standard two-process 

serial model. 
 

As defined earlier, the intercompletion time 𝑇/ is the time that is 
spent for stage 1 and 𝑇0 is the time that is spent for stage 2. So for 
Case I, 𝑇/ = 𝑧H, 𝑇0 = 𝑧I and for Case II, 𝑇/ = 𝑧I, 𝑇0 = 𝑧H. It is 
apparent that 𝑇/ and 𝑇0 are iid as 𝑧H and 𝑧I are assumed iid. The 
total completion time 𝕋H is the time that is consumed from the onset 
of the model to the moment that process 𝑎 is complete. The total 
completion time 𝕋I is the time that is consumed from the onset of 



the model to the moment that process 𝑏 is complete.  So for Case I, 
𝕋H = 𝑇/ = 𝑧H, 𝕋I = 𝑇/ + 𝑇0 = 𝑧H + 𝑧I and for Case II, 𝕋H = 𝑇/ + 𝑇0 =
𝑧H + 𝑧I, 𝕋I = 𝑇/ = 𝑧I.  
 
Standard two-process parallel models: Since two processes are 
under consideration (see an example in Figure 3), the total 
completion time for process a and the total completion time for 
process b are  

𝕋H = 𝑧H,	
𝕋I = 𝑧I, 

respectively. Please note that Figure 3 is an exemplar representation 
of a standard two-process parallel model in which process 𝑎 is faster 
than process 𝑏. It is indeed possible that process 𝑎 is slower than 
process 𝑏 as 𝑧H and 𝑧I are iid. The intercompletion times in Figures 3 
can be represented as 

𝑇/ = 𝕋H = 𝑧H, 
𝑇0 = 𝕋I − 𝕋H = 𝑧I−𝑧H. 

 

 
Figure 3. A standard two-process parallel model. 

 
Townsend and Ashby (1983) showed that by assuming the 
distributions of processing times are exponential, standard two-
process serial models yield a positive dependence between the total 
completion times of processes a and b. That is the conditional 
probability that a is completed before some time 𝜏 given b has 
already been completed by this time is greater than the unconditional 
probability that a is completed by time 𝜏. It has not been known if 
this prediction holds for total completion times with arbitrarily 
distributed processes. 
 



Turning to the issue of dependence of intercompletion times, there 
are two intriguing questions that arise:  1. How does that second 
intercompletion time behave as the time occupied by the first 
termination (equal to the first intercompletion time) increases?  Note 
that in a standard serial model, the second intercompletion time is 
independent of the first intercompletion time.  2. How does the 
second intercompletion time behave in comparison to the distribution 
(speed, etc.) of the first intercompletion time? 
 

5. Experimental Paradigms Related to Intercompletion 
Times  

 
Free recall is one of the experimental paradigms that was 
systematically used to study the serial-parallel issue. In this paradigm, 
the subject is instructed to recall words that belong to a semantic 
category from their long-term memory (Bousfield & Sedgewick, 1944; 
Bousfield, Sedgewick, & Cohen, 1954), for instance, name as many 
cities in the United States as they could remember. The words were 
reported successively. It was found that the time interval between 
two successive responses, that is the intercompletion time, increased 
as more responses were generated (Murdock & Okada, 1970; 
Patterson, Meltzer, & Mandler, 1971; Pollio, Kasschau, & DeNise, 
1968; Pollio, Richards, & Lucas, 1969).  
 
McGill contributed an influential chapter on stochastic processes in 
psychology, to the 1963 Volume 1 of the Handbook of Mathematical 
Psychology.  His work is based on a serial model to account for the 
general temporal characteristics of the Bousfield & Sedgewick (1944) 
data. He assumed only one item could be sampled from a search set 
and inspected at any time. It assumes all the relevant items are 
equally likely to be chosen at each draw. After each draw, the subject 
inspects if the item is a member of the specified category and if the 
item is not recalled earlier before reporting this item. The amount of 
time for each inspection, which is the so called intercompletion time 
or processing time of each process (item) in the language of serial 
models, is assumed exponentially distributed with the same rate 
parameter. Interestingly, his serial model is identical to a standard 
parallel model with exponential distributions on the 𝑛 channels. 



Since some items can be more easily to be accessed (Shiffrin, 1970), 
Vorberg and Ulrich (1987) generalized McGill’s work to the models 
that assume unequal accessibility. The generalized model can remove 
the minor discrepancies between the original McGill’s model and data 
in terms of predicting the number of generated items by a certain 
time moment. The stochastic representation of Vorberg and Ulrich’s 
(1987) serial model is written as 

𝑃 𝐼 𝑓: 𝑇/ = 𝑡/, … , 𝑇1 = 𝑡1 	𝐼 = 𝑖/, … , 𝑖1 	

=
VWX
VWY

Z
Y[X

1
%\/ 𝑢^Y

1
_\% exp − 𝑢^Y

1
_\% 𝑡%1

%\/ ,  

where 𝑢^X stands for the rate parameter for process (or item) 𝑖% and n 
is the number of recallable target items within the search set. The 
model predicts that the rate parameter of the j-th intercompletion 
time equals the sum of rate parameters of processes that have not 
been executed. Note that when equal accessibility assumption is 
imposed (𝑢	=	𝑢^b	=	⋯	=	𝑢^Z), the intercompletion time distribution 
does not depend on the recall order any more and the conditional 
joint density function is 

𝑓: 𝑇/ = 𝑡/, … , 𝑇1 = 𝑡1 	𝐼 = 𝑖/, … , 𝑖1 	
= (𝑛 − 𝑗 + 1)𝑢exp − 𝑛 − 𝑗 + 1 𝑢𝑡%1

%\/ , 
which is McGill (1963)’s model. Vorberg and Ulrich (1987) also 
derived the stochastic representation of the counterpart parallel 
model with the assumption of unequal accessibility: 

𝑓C 𝕋/ = 𝜏/, … , 𝕋1 = 𝜏1; 𝐼 	
= 𝑢%exp −𝑢%𝜏%1

%\/ . 
The total processing times are independent with each other in the 
counterpart parallel model.   
 
According to McGill’s model, Rohrer and Wixted (1994) derived a 
hyperbolic intercompletion time growth as more items are generated: 

𝑇c =
1

𝑢(𝑛 − 𝑗), 

where 𝑇c is the mean of the j-th intercompletion time. This equation 
reflects that an intercompletion time is uniquely determined 𝑛 − 𝑗. 
Thus, the last intercompletion time of a four-item recall should equal 
the last intercompletion time of a nine-item recall. They conducted 
experiments by asking the subjects to recall the words studied earlier. 



By manipulating the size of the study word list or/and the 
presentation time for each word, they found the hyperbolic 
intercompletion time growth fitted the data well. As mentioned earlier, 
McGill’s serial model is identical to a standard parallel model with 
exponential processing times. Thus Rohrer and Wixted (1994) study 
is an example to support the iid processing time assumption if one 
considers the recall a parallel process.   
 

6. Goals 
 

Despite of all variations of serial and parallel models, in this paper we 
aim to  (1) differentiate, characterize, and compare standard serial 
models with standard parallel models by investigating the behavior of 
(conditional) distributions, rather than the joint density function or 
the mean, of the total completion times and also the intercompletion 
times, in complete generality, that is, without assuming any particular 
form for the distributions of processing times, (2) investigate if either 
or both models can account for the growth of intercompletion time as 
a function of output position in free recall experiments, and (3) check 
if additional constraints should be imposed on the models that result 
in the theoretically derived behavior of the models consistent with the 
empirical finding.  
 
For the current study, we confine our discussion on the standard 
two-process serial models and the standard two-process parallel 
models. Our work can likely be generalized to the models with 𝑛	 > 	2 
processes in an analogous way. 
 

Dependence of Total Completion Times	
 

As stated above, our first goal is to investigate the dependence of 
total completion times without assuming a specific family distribution 
to processing times.  
 
A natural way of doing this is to compare the distribution function of 
𝕋I conditional on 𝕋H versus the unconditional distribution function of 
𝕋I. That is 
                            𝑃 𝕋I ≤ 𝜏 𝕋H ≤ 𝜏 − 𝑃 𝕋I ≤ 𝜏 .           (1) 



 
If it is positive then we conclude that the total completion times in 
this case are positively dependent in a strong distributional sense, 
and conversely if the difference is negative. One can also investigate 
𝑃(𝕋H ≤ 𝜏|𝕋I ≤ 𝜏) − 𝑃(𝕋H ≤ 𝜏), which is indeed not different from 
(1). 
 

1. Dependence of Total Completion Times in Standard 
Two-Process Serial Models 

 
It was proven by Townsend & Ashby (1983, Page 73-74), if the 
processing times 𝑧H and 𝑧I (or the intercompletion times 𝑇/ and 𝑇0) 
in a two-process serial model are iid and follow exponential 
distributions, then 1 > 0 for 𝜏 > 0. We now investigate if (1) >
0	holds for distributional free processing times. 
 
Theorem 1. For a standard two-process serial model, 𝑃(𝕋I 	≤
𝜏|𝕋H ≤ 𝜏) − 𝑃(𝕋I ≤ 𝜏) can be either negative or positive for 𝜏 > 0.  
Proof. First note that 

𝑃(𝕋I 	≤ 	𝜏		|	𝕋H

	

≤ 	𝜏	) 	=
𝑃 𝕋I 	≤ 𝜏		 ∩ 𝕋H

	

≤ 	𝜏	
𝑃 	𝕋H

	

≤ 	𝜏	 . 

The numerator is a convolution of the density function and 
the distribution function: 

𝑃 𝕋I 	≤ 𝜏		 ∩ 	𝕋H

	

≤ 	𝜏	 	
= 𝑃	 max 𝕋I, 𝕋H ≤τ 	
= 𝑃	 𝑇/ + 𝑇0 ≤τ 	
= 𝑃 𝑧H + 𝑧I ≤τ 	

= 𝑓(𝑦 − 𝑥
k

O

l

O
)𝑓 𝑥 𝑑𝑥𝑑𝑦	

= 𝑓 𝜏 ∗ 𝐹 𝜏 .	
Note that it is always true that 𝑓 𝜏 ∗ 𝐹 𝜏 ≤ 1. The denominator is 
the probability that the process 𝑎 gets completed by time 𝜏 and is 
composed of the probability that 𝑎 is completed first (i.e., 𝑝) times 
the probability that it is completed by time 𝜏 (i.e., 𝐹(𝜏)) plus the 
probability that 𝑏 is processed first (i.e., 1 − 𝑝) times the probability 
that both have been completed by that time (i.e., 𝑓(𝜏) ∗ 𝐹(𝜏)). We 
then have  



𝑃 	𝕋H

	

≤ 	𝜏	 = 𝑝𝐹 𝜏 + 1 − 𝑝 𝑓 𝜏 ∗ 𝐹 𝜏 . 
On the other hand, the unconditional probability that 𝑏 gets finished 
by time 𝜏	is 

𝑃 	𝕋I

	

≤ 	𝜏	 = (1 − 𝑝)𝐹 𝜏 + 𝑝𝑓 𝜏 ∗ 𝐹 𝜏 . 
Consequently,  

𝑃 𝕋I ≤ 𝜏 𝕋H ≤ 𝜏 − 𝑃 𝕋I ≤ 𝜏 	
= o l ∗p l

Cp l q /3C o l ∗p l
− [ 1 − 𝑝 𝐹 𝜏 + 𝑝𝑓 𝜏 ∗ 𝐹 𝜏 ]  

= 𝑅 1 − 𝐹(𝜏) − 𝑝 1 − 𝑝 𝑓 𝜏 ∗ 𝐹 𝜏
b
s − p(l)

o l ∗p l
b
s

0

,   (2)                    

where  

𝑅 =
𝑓 𝜏 ∗ 𝐹 𝜏

𝑝𝐹 𝜏 + 1 − 𝑝 𝑓 𝜏 ∗ 𝐹 𝜏 ≥ 0, 

for 𝜏 > 0. Since 𝑝(1 − 𝑝) ≤ /
u
, then  

 (2) ≥ 𝑅 1 − 𝐹 𝜏 − /
u

𝑓 𝜏 ∗ 𝐹 𝜏
b
s − p l

o l ∗p l
b
s

0

.                            

Note that if 𝑝 = /
0
, the above ≥ reduces to =. Now we need to 

investigate the sign of this term: 

           1 − 𝐹 𝜏 − /
u

𝑓 𝜏 ∗ 𝐹 𝜏
b
s − p l

o l ∗p l
b
s

0

.        (3) 

If (3) >0, it indicates that (1) is positive. In other words, positive 
dependence holds in standard two-process serial models with 
distributional free processing times. Otherwise positive dependence 
does not hold. The sign of (3) was estimated using the computational 
method. We have  

𝑓 𝜏 ∗ 𝐹 𝜏 = 𝑃	 𝑧H + 𝑧I ≤τ = 𝑃	 𝑧H ≤τ − 𝑧I , 
𝐹 𝜏 = 𝑃	 𝑧H ≤τ . 

Therefore 𝑓 𝜏 ∗ 𝐹 𝜏 ≤ 𝐹 𝜏  since 𝑧I ≥ 0. Having 0 ≤ 𝑓 𝜏 ∗ 𝐹 𝜏 ≤
𝐹 𝜏 ≤ 1 for 𝜏 > 0, 

𝐹 𝜏

𝑓 𝜏 ∗ 𝐹 𝜏
/
0
=

𝐹 𝜏 𝐹 𝜏
𝑓 𝜏 ∗ 𝐹 𝜏

/
0
 



																																													=
𝑃 𝑧H ≤ 𝜏 𝑃 𝑧I ≤ 𝜏

𝑓 𝜏 ∗ 𝐹 𝜏

/
0
 

																																																					=
𝑃 max	(𝑧H, 𝑧I) ≤ 𝜏

𝑓 𝜏 ∗ 𝐹 𝜏

/
0
≥ 1. 

The computation was conducted with the order constraints stated 
above. In addition, we let 𝑓 𝜏 ∗ 𝐹 𝜏  vary uniformly within the 
interval [0,1] and 𝐹 𝜏  vary uniformly within the interval [𝑓 𝜏 ∗
𝐹 𝜏 , 1]. The computational steps are: 
Step 1: generate a random number 𝛼~Uniform	[0,1], where 𝛼 
represents 𝑓 𝜏 ∗ 𝐹 𝜏 . 
Step 2: generate a random number 𝛽~Uniform	[𝛼, 1], where 𝛽 
represents 𝐹 𝜏 . 
Step 3: if }

s

~
≥ 1, then compute (3) to check if it is strictly larger 

than	0.  
1,000,000 pairs of (𝛼, 𝛽) were generated. It was found that the 
probability of (3) > 0 conditional on }

s

~
≥ 1 was 62%. The 

computational result indicates that the sign of 𝑃(𝕋I 	≤ 𝜏|𝕋H ≤ 𝜏) −
𝑃(𝕋I ≤ 𝜏) is not definite. ☐                                                                                                                                      
 
According to the computation above, one may conclude that positive 
dependence for the total completion times does not necessarily hold 
in the standard two-process serial models if no specific distributions 
are imposed to processing times. Here we construct examples to 
provide more illustrations about it. In the examples, we assume the 
processing times 𝑧H and 𝑧I (or equivalently 𝑇/ and 𝑇0) follow 
Weibull distributions, exponential distributions, which is a special 
case of Weibull distributions, or uniform distributions. Uniform 
distributions are not usually used to model time variables. We discuss 
this type of distribution as it results in the interesting behavior of 
process dependence. We observe positive dependence holds when 
the processing times are Weibull distributed with the parameter 𝑘 =
.5, 1 (that is the exponential distribution), and 1.5 but fails when 𝑘 =
.2,	2, or the processing times are uniformly distributed.   
 



Weibull distributions: Let 𝑧H, 𝑧I be iid and follow the Weibull 
distribution with the density function 

𝑓(𝜏) = 𝑘𝑢(𝑢𝜏)�3/exp − 𝑢𝜏 � , 
where the parameters 𝑘, 𝑢 > 0. Since the convolution of two Weibull 
variables does not have an analytic form, we use the computational 
method to achieve the values for (3). We present the 3d plots for (3) 
by varying the values of 𝜏 and u (Figures 4 and 5). We allow 𝑢 to 
vary from .5 to 10 and 𝜏 to vary from 0.01 to 5. In Figure 4, the 
upper plot fixes 𝑘 = .5	and the bottom one fixes 𝑘 = 1.5. The values 
of (3), represented by the vertical coordinate, are positive and 
approaching zero as 𝜏 → ∞. In Figure 5, the upper plot fixes 𝑘 =
.2	and the bottom one fixes 𝑘 = 2. The values of (3), are non positive 
when 𝑘 = .2 and fluctuate from positive to negative and then 
approach zero as 𝜏 → ∞ in general when 𝑘 = 2. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 



 

 
Figure 4. Plots of (3) for Weibull distributed processing times, where  

𝑘 = .5 (upper) and 𝑘 = 1.5 (bottom). 



 

 
Figure 5. Plots of (3) for Weibull distributed processing times, where  

𝑘 = .2 (upper) and 𝑘 = 2 (bottom). 



Exponential distributions (also see Townsend & Ashby, 1983, 
Page 73-74): When 𝑘 = 1, Weibull distributions reduce to exponential 
distributions. Now the density function for 𝑧H, 𝑧I is  

𝑓 𝜏 = 𝑢exp(−𝑢𝜏). 
The corresponding distribution function is 

𝐹 𝜏 = 1 − 𝑒3Vl . 
Also we have  

𝑓 𝜏 ∗ 𝐹 𝜏 = 𝑢𝑒3V(l3ls)
l

O
1 − 𝑒3Vls 𝑑𝜏0 = 1 − 𝑒3Vl − 𝑢𝜏𝑒3Vl. 

We then have                                            
𝑃 𝕋I ≤ 𝜏 𝕋H ≤ 𝜏 − 𝑃 𝕋I ≤ 𝜏 	

=
1

𝑝𝐹 𝜏 + 1 − 𝑝 𝑓 𝜏 ∗ 𝐹 𝜏 𝑓 𝜏 ∗ 𝐹 𝜏

− 𝑝𝐹 𝜏 + 1 − 𝑝 𝑓 𝜏 ∗ 𝐹 𝜏 1 − 𝑝 𝐹 𝜏 + 𝑝𝑓 𝜏
∗ 𝐹 𝜏 	

= 𝑅′ 1 − 𝑒3Vl − 𝑢𝜏𝑒3Vl
− 𝑝(1 − 𝑒3Vl) + 1 − 𝑝 (1 − 𝑒3Vl − 𝑢𝜏𝑒3Vl) 1 − 𝑝 (1
− 𝑒3Vl) + 𝑝(1 − 𝑒3Vl − 𝑢𝜏𝑒3Vl)  

= 𝑅′ 1 − 𝑒3Vl − 𝑢𝜏𝑒3Vl
− 1 − 2𝑒3Vl − 𝑢𝜏𝑒3Vl + 𝑒30Vl + 𝑢𝜏𝑒30Vl + 𝑝(1
− 𝑝)𝑢0𝜏0𝑒30Vl  

= 𝑅′𝑒3Vl 1 − 𝑒3Vl − 𝑢𝜏𝑒3Vl − 𝑝(1 − 𝑝)𝑢0𝜏0𝑒3Vl , 
where 𝑅′ = /

Cp l q /3C o l ∗p l
. Since 𝑝 1 − 𝑝 ≤ /

u
, the above 

expression is	
≥ 𝑅′𝑒3Vl 1 − 𝑒3Vl − 𝑢𝜏𝑒3Vl −

1
2 𝑢

0𝜏0𝑒3Vl 		
> 0 

for 𝜏 > 0 as the distribution function of a three-stage gamma with 
rate 𝑢 is just 1 − 𝑒3Vl − 𝑢𝜏𝑒3Vl − /

0
𝑢0𝜏0𝑒3Vl.  

 
Uniform distributions: Let 𝑧H, 𝑧I be iid and follow the uniform 
distribution: 

𝑧H, 𝑧I~Uniform 0, 𝑣 ,	 
where 𝑣 > 0. The corresponding distribution function is 

𝐹 𝜏 =
l
�
, if	0 ≤ 𝜏 < 𝑣
1, otherwise

 . 

Also we have  



𝑓 𝜏 ∗ 𝐹 𝜏 =

𝜏
𝑣0

l

O
𝑑𝜏0 =

𝜏0

2𝑣0 , if	0 ≤ 𝜏 < 𝑣,

2𝑣 − 𝜏0
𝑣0

l

�
𝑑𝜏0 +

1
2 =

2𝜏
𝑣 −

𝜏0

2𝑣0 − 1, if	𝑣 ≤ 𝜏 < 2𝑣,

1, if	2𝑣 ≤ 𝜏.

	

 
We then have for 2𝑣 ≤ 𝜏,  

𝑃 𝕋I ≤ 𝜏 𝕋H ≤ 𝜏 − 𝑃 𝕋I ≤ 𝜏 = 0; 
for 𝑣 ≤ 𝜏 < 2𝑣, 

𝑃 𝕋I ≤ 𝜏 𝕋H ≤ 𝜏 − 𝑃 𝕋I ≤ 𝜏 	

= 𝑅 1 − 𝐹 𝜏 − 𝑝 1 − 𝑝 𝑓 𝜏 ∗ 𝐹 𝜏
/
0 −

𝐹 𝜏

𝑓 𝜏 ∗ 𝐹 𝜏
/
0

0

	

= 𝑅 1 − 1 − 𝑝 1 − 𝑝 𝑓 𝜏 ∗ 𝐹 𝜏
/
0 −

1

𝑓 𝜏 ∗ 𝐹 𝜏
/
0

0

	

≤ 0; 
for 0 ≤ 𝜏 < 𝑣,  
                                       

𝑃 𝕋I ≤ 𝜏 𝕋H ≤ 𝜏 − 𝑃 𝕋I ≤ 𝜏 	

= 𝑅 1 − 𝐹 𝜏 − 𝑝 1 − 𝑝 𝑓 𝜏 ∗ 𝐹 𝜏
/
0 −

𝐹 𝜏

𝑓 𝜏 ∗ 𝐹 𝜏
/
0

0

	

= 𝑅 1 −
𝜏
𝑣 − 𝑝 1 − 𝑝

𝜏0

2𝑣0

/
0
−

𝜏
𝑣

𝜏0
2𝑣0

/
0

0

. 

When 𝑝 = /
0
, the above expression is	

= 𝑅 1 −
𝜏
𝑣 −

1
4

2𝜏
2𝑣 − 2

0

	

= 𝑅 1 −
1
2

𝜏
2𝑣 + 1

0
. 

It can be negative when e.g., l
�
= �

�
 or positive when e.g., l

�
= /

0
.  



Theorem 1 considers the two possible permutations of process 𝑎 and 
process 𝑏. It is found that the dependence of total completion times 
can be both positive and negative, that is (1) can be > 0,= 0, or < 0 
at different 𝜏. Corollary 2 states if only one permutation is allowed in 
the investigated system, dependence of total completion times is non 
negative, that is 1 ≥ 0.  Lemma 3 presents the covariance of a total 
completion times.  
 
Corollary 2. For a standard two-process serial model, 𝑃(𝕋I 	≤
𝜏|𝕋H ≤ 𝜏) − 𝑃(𝕋I ≤ 𝜏) is non-negative for 𝜏 > 0 if only the Case I 
arrangement or only the Case II arrangement is allowed in the 
investigated system. 
Proof. Under this situation, 𝑝 is either 0 or 1. So we have 

2 = 	𝑅	 1	– 	𝐹	 𝜏 ≥ 0 
for 𝜏 > 0. ☐ 
 
Lemma 3. For a standard two-process serial model, if only the Case 
I arrangement or only the Case II arrangement is allowed, 
Cov 𝕋H, 𝕋I = Var 𝑇/ . 
Proof. Cov 𝕋H, 𝕋I = E 𝑇/ 𝑇/ + 𝑇0 − E 𝑇/ E 𝑇/ + 𝑇0 	

												= E 𝑇/0 + E 𝑇/𝑇0 − E0 𝑇/ − E 𝑇/)𝐸(𝑇0 	
																																													= Var 𝑇/ . ☐     
 

2. Dependence of Total Completion Times in Standard 
Two-Process Parallel Models 
 

Similarly as in standard two-process serial models, we investigate the 
behavior of (1) in standard two-process parallel models without 
assuming any specific distributions to processing times 𝑧H and 𝑧I. It 
is found that 1 = 0 and this statement is presented in Theorem 4. 
We also compute the covariance of a total completion times for 
standard two-process parallel models. The result is presented in 
Lemma 5.  

 
Theorem 4. For a standard two-process parallel model, 
𝑃 𝕋I 	≤ 𝜏 𝕋H ≤ 𝜏 − 𝑃 𝕋I ≤ 𝜏 = 0 for 𝜏 > 0. 
Proof. Recall that for a standard two-process parallel model, 𝕋H 
and 𝕋I are iid since 𝑧H and 𝑧I are iid. So we have  



𝑃 𝕋I 	≤ 𝜏 𝕋H ≤ 𝜏 − 𝑃 𝕋I ≤ 𝜏 	

=
𝑃 𝕋I 	≤ 𝜏		 ∩ 𝕋H

	

≤ 	𝜏	
𝑃 𝕋H ≤ 𝜏 − 𝑃 𝕋I ≤ 𝜏 	

=
𝑃 𝕋I 	≤ 𝜏	)𝑃(𝕋H

	

≤ 	𝜏	
𝑃 𝕋H ≤ 𝜏 − 𝑃 𝕋I ≤ 𝜏 	

                                   = 0.                                            ☐ 
 
Lemma 5. For a standard two-process parallel model, Cov 𝕋H, 𝕋I =
0. 
Proof. This is apparent. ☐ 
 
Standard two-process serial models and standard two-process 
parallel models can be differentiated according to Theorem 1 and 
Theorem 4. Specifically, 𝑃 𝕋I 	≤ 𝜏 𝕋H ≤ 𝜏 − 𝑃 𝕋I ≤ 𝜏  cannot 
always be zero for a standard two-process serial model; while as 
for a standard two-process parallel model, the function maintains 
zero along the axis of 𝜏. One can also differentiate the two models 
according to Lemma 3 and Lemma 5. 
 

Dependence of Intercompletion Times 
 
The intercompletion times in a standard serial model are processing 
times that are assumed independent and identically distributed. 
Therefore the empirical finding that as the number of stage increases, 
the intercompletion time also increases cannot be accounted by the 
standard serial models. It does not imply investigating the theories of 
standard serial models valueless. If one studies for instance 
typewriting, it is very possible that the intercompletion times for 
typing letters are independently and identically distributed. Then the 
standard serial model is applicable in this paradigm. 
 
In contrast, standard parallel models can account for this 
phenomenon. Without loss of generalization, we label the process 
completed earlier process a and the other is labeled as process b in a 
standard two-process parallel model. Recall that the processing times 
𝑧H and 𝑧I, or equivalently 𝕋H and 𝕋I, are assumed iid. Now let us 
label the intercompletion times for stage 1 and stage 2 as 𝑇H and 𝑇I, 
where 



𝑇H = 𝕋H = 𝑧H,	
𝑇I = 𝕋I − 𝕋H = 𝑧I − 𝑧H. 

 
We investigate the survival function of the inter completion time 𝑇I 
conditional on the completion of stage 1: 𝑃 𝑇I > 𝑡 𝕋I > 𝕋H , where 
𝑡 > 0. Interestingly, it is found that the behavior of 
𝑃 𝑇I > 𝑡 𝕋I > 𝕋H  depends on the hazard function of processing 
time ℎ.  
 
Lemma 6. For a standard two-process parallel model, if the hazard 
function ℎ is non-increasing, then 𝑃 𝑇I > 𝑡 𝕋I > 𝕋H  is non-
decreasing as 𝑇H is increased.    
Proof. We have  

𝑃 𝑇I > 𝑡 𝕋I > 𝕋H 	
= 𝑃 𝑇H + 𝑇I > 𝑇H + 𝑡 𝕋I > 𝕋H 	
= 𝑃 𝕋I > 𝑇H + 𝑡 𝕋I > 𝑇H 	

=
𝑆(𝑇H + 𝑡)
𝑆(𝑇H)

, 

which is a ratio of two survival functions. To examine the behavior 
of this ratio as 𝑇H changes, one can take the derivative: 

𝑑
𝑑𝑇H

𝑆 𝑇H + 𝑡
𝑆 𝑇H

	

=
−𝑆 𝑇H 𝑓 𝑇H + 𝑡 + 𝑆 𝑇H + 𝑡 𝑓 𝑇H

𝑆0 𝑇H
	

=
𝑆 𝑇H 𝑆 𝑇H + 𝑡

𝑆0 𝑇H
𝑓 𝑇H
𝑆 𝑇H

−
𝑓 𝑇H + 𝑡
𝑆 𝑇H + 𝑡

	

=
𝑆 𝑇H 𝑆 𝑇H + 𝑡

𝑆0 𝑇H
ℎ(𝑇H) − ℎ(𝑇H + 𝑡) . 

If the hazard function ℎ is non-increasing, then �
���

� ��q�
� ��

≥ 0.  
Consequently, 𝑃 𝑇I > 𝑡 𝕋I > 𝕋H  is non-decreasing as 𝑇H is 
increased.  ☐ 
 
A separate issue is how does the later stage (stage 2) compete with 
the earlier stage (stage 1) in a standard two-process parallel model. 
Let us denote the ratio of the hazard functions: 

𝛼 𝑡, 𝑇H + 𝑡 =
ℎ 𝑇H + 𝑡
ℎ 𝑡 . 



The survival function at stage 1 in the standard two-process parallel 
model is 𝑆0(𝑡). The survival function at stage 2 is	𝑃 𝑇I > 𝑡 𝕋I > 𝕋H , 
which is equivalent to �(��q�)

�(��)
. We then aim to investigate 𝑆0(𝑡) vs. 

�(��q�)
�(��)

. If the survival from stage 1 to stage 2 is increasing, this trend 
is then consistent with the empirical finding that the amount of 
intercompletion time grows as the number of stages grows. Theorem 
7 provides under what exact condition the survival increases from 
stage 1 to 2. Corollary 8 states that standard two-process parallel 
models with concave or linear cumulative hazard function 𝐻(𝑡) 
result in the increasing survival from stage 1 to stage 2. 
 
Theorem 7. The survival function from the first stage to the second 
stage in a standard two-process parallel model is non-increasing or 
increasing depending on the value of 𝛼 𝑡, 𝑇H + 𝑡 . That is 𝑆0 𝑡 −
� ��q�
� ��

≥ 0 if 𝛼 𝑡, 𝑇H + 𝑡 ≥ 2; 𝑆0 𝑡 − � ��q�
� ��

< 0 if 𝛼 𝑡, 𝑇H + 𝑡 < 2. 
Proof. Note that 𝑆 𝑡 = exp −𝐻 𝑡 . We have 

𝑆0 𝑡 −
𝑆 𝑇H + 𝑡
𝑆 𝑇H

	

= exp −2𝐻 𝑡 −
exp −𝐻 𝑇H + 𝑡
exp −𝐻 𝑇H

. 

The sign of the above equation is the same as the function below 
	

              −2𝐻 𝑡 + 𝐻 𝑇H + 𝑡 − 𝐻 𝑇H ,             (4) 
which is equivalent to 	

−2ℎ 𝑡 𝑑𝑡 +
�

O
ℎ 𝑡 𝑑𝑡

��q�

��
	

= −2ℎ 𝑡 𝑑𝑡 +
�

O
ℎ 𝑇H + 𝑡 𝑑𝑡
�

O
	

= −2ℎ 𝑡 + 𝛼 𝑡, 𝑇H + 𝑡 ℎ 𝑡 𝑑𝑡
�

O
 

≥ 0, if	𝛼 𝑡, 𝑇H + 𝑡 ≥ 2	
< 0, if	𝛼 𝑡, 𝑇H + 𝑡 < 2	.															

	
Therefore 𝑆0 𝑡 − � ��q�

� ��
≥ 0 if	𝛼 𝑡, 𝑇H + 𝑡 ≥ 2 and otherwise < 0. 

☐ 



 
Corollary 8. For a standard two-process parallel model, (i) if the 
cumulative hazard function 𝐻(𝑡) is concave or linear, then 𝑆0 𝑡 −
� ��q�
� ��

< 0; (ii) if 𝐻(𝑡) is convex, then the sign of 𝑆0 𝑡 − � ��q�
� ��

 is 
uncertain. 
Proof. (i) If the cumulative hazard function 𝐻(𝑡) is concave or 
linear, then the hazard function ℎ(𝑡) is decreasing or a constant. 
Consequently, 𝛼 𝑡, 𝑇H + 𝑡 < 1 or = 1. According to Theorem 7, 
𝑆0 𝑡 − � ��q�

� ��
< 0 is proved. (ii) If 𝐻(𝑡) is convex, the hazard 

function ℎ(𝑡) is increasing. Then we have 𝛼 𝑡, 𝑇H + 𝑡 = � ��q�
� �

> 1. 
It is uncertain if 𝛼 𝑡, 𝑇H + 𝑡 ≥ 2 or 𝛼(𝑡, 𝑇H + 𝑡) < 2. So the sign of 
𝑆0 𝑡 − � ��q�

� ��
 is uncertain.☐ 

 
Similar as in the section of dependence of total completion times 
for standard two-process serial models, we construct examples to 
further illustrate the behavior of 𝑆0 𝑡 − � ��q�

� ��
 for standard two-

process parallel models. In the examples, we assume the processing 
times 𝑧H and 𝑧I (or equivalently 𝕋H and 𝕋I) follow Weibull 
distributions (exponential distributions are included as a special 
case) or uniform distributions. We observe when 𝑘	 ≤ 1, the Weibull 
distributed 𝑧H and 𝑧I result in the increasing survival function from 
the first stage to the second stage. The survival function is neither 
increasing nor decreasing when 𝑧H and 𝑧I are Weibull distributed 
with e.g. 𝑘 = 2 and 4, or uniformly distributed. 
 
Weibull distributions: We assume  

𝑧H, 𝑧I~Weibull 𝑘, 𝑢 ,	 
where 𝑘, 𝑢 > 0. The corresponding cumulative hazard function and 
the hazard function are  

𝐻 𝑡 = 𝑢 𝑢𝑡 �3/𝑡 
and 

ℎ 𝑡 = 𝑢𝑘 𝑢𝑡 �3/.  
If 𝑘 = 1, then the Weibull distribution reduces to the exponential 
distribution: 

𝑧H, 𝑧I~Exp 𝑢 .	 



The cumulative hazard function for the exponential distribution is 
linear:  

𝐻 𝑡 = 𝑢𝑡. 
The hazard function is a constant: 

ℎ 𝑡 = 𝑢.  
It is apparent  

𝛼 𝑡, 𝑇H + 𝑡 = � ��q�
�(�)

= 1 < 2.  
Therefore the survival function for exponentially distributed processes 
is increasing from the first stage to the second stage.  
 
If 𝑘 < 1, then the cumulative hazard function is concave and the 
hazard function is decreasing.  Hence the survival is also increasing 
from stage 1 to stage 2 as 

𝛼 𝑡, 𝑇H + 𝑡 = � ��q�
�(�)

< 1.  
If 𝑘 > 1, then the cumulative hazard function is convex as 𝛼 𝑡, 𝑇H +
𝑡 = � ��q�

�(�)
> 1. It is uncertain if 𝛼 𝑡, 𝑇H + 𝑡 ≥ 2 or 𝛼 𝑡, 𝑇H + 𝑡 < 2.  

We investigate the sign of 𝑆0 𝑡 − � ��q�
� ��

 by computing (4) using the 
computational method. We present the 3d plots (Figure 6) for (4) by 
varying the values of 𝑡 and 𝑇H from 0 to 10 and fixing 𝑢	 = 	1. The 
upper plot fixes 𝑘 = 2 and the bottom one fixes 𝑘 = 4. We observe 
(4) can be negative and positive for different combinations of 𝑡 and 
𝑇H. We conclude that for k > 1, the survival function from stage 1 to 
stage 2 can be neither increasing nor decreasing.  
 

 
 
 

 
 
 



Figure 6. Plots of (4) for Weibull distributed processing times, where 
𝑘	 = 	2 (upper) and 𝑘	 = 	4 (bottom).   

 
 

	
	
	

	



Uniform distributions: Let  
𝑧H, 𝑧I~Uniform 0, 𝑣 ,	 

where 𝑣 > 0. The corresponding cumulative hazard function is 
convex:  

𝐻 𝑡 = −ln	(𝑣 − 𝑡) + 𝑙𝑛𝑣 
and the hazard function is  

ℎ 𝑡 =
1

𝑣 − 𝑡. 
We have  

𝛼 𝑡, 𝑇H + 𝑡 = � ��q�
�(�)

= �3�
�3��3�

≥ 1.  

We investigate the sign of 𝑆0 𝑡 − � ��q�
� ��

 by computing (4) using the 
computational method. We present the 3d plot (Figure 7) for (4) by 
varying the values of 𝑡 and 𝑇H from 0 to 1 and fixing 𝑣	 = 	2. We 
observe (4) can be negative and positive for different combinations of 
𝑡 and 𝑇H. Therefore the survival function from stage 1 to stage 2 is 
neither increasing nor decreasing for uniformly distributed processing 
times.  

 
Figure 7. A plot of (4) for uniformly distributed processing times. 

 
 



Summary and Conclusions 
 
In this article we differentiate and characterize the standard two-
process serial models and the standard two-process parallel models 
by investigating the behavior of (conditional) distributions of the total 
completion times and survivals of intercompletion times without 
assuming any particular forms for the distributions of processing 
times. We address our argument through mathematical proofs and 
computational methods.  
 
It is found that for the standard two-process serial models, positive 
dependence between the total completion times does not hold if no 
specific distributional forms are imposed to the processing times. 
That is the conditional probability that a is completed before some 
time 𝜏 given b has already been completed by this time can be 
greater or less than the unconditional probability that a is completed 
by time 𝜏. By contrast, for the standard two-process parallel models 
the total completion times are independent in the sense that the 
conditional probability that a is completed before some time 𝜏 given b 
has already been completed by this time is equal to the unconditional 
probability that a is completed by time 𝜏. According to different 
nature of process dependence, one can distinguish a standard two-
process serial model from a standard two-process parallel model. 
 
We also find that in standard two-process parallel models the 
monotonicity of survival function of the intercompletion time of stage 
2 conditional on the completion of stage 1 depends on the 
monotonicity of the hazard function of processing time. We also find 
that the survival of intercompletion time(s) from stage 1 to stage 2 is 
increasing when the ratio of hazard function meets certain criterion. 
Then the empirical finding that the intercompletion time is grown 
with the growth of the number of recalled words can be accounted 
by standard parallel models. We also find that if the cumulative 
hazard function is concave or linear, the survival from stage 1 to 
stage 2 is increasing.  
 

1. Limitations 



We understand that the iid assumption for processing times is strong 
as in many paradigms it may not hold. Nevertheless this assumption 
may hold in some specific paradigms, for instance in Rohrer and 
Wixted (1994). Moreover, with the iid assumption, the standard serial 
models and standard parallel models can be diagnosed according to 
the mathematical properties of the temporal variables. The standard 
parallel models take account of the positive association between the 
amount of intercompletion time and the number of items that have 
been generated. Therefore, the standard models are worthy a full 
theoretical investigation for the empirical and mathematical interest. 
 

2. A Simple Recall Experiment to Illustrate the Models 
 
We consider an experimental paradigm in which the subjects recall 
words from a previously learned list. Positive association between the 
amount of intercompletion time and number of recalled words is 
expected.  
 
Standard serial models cannot interpret this result as we have 
discussed earlier. For the recall experiment that we propose currently, 
standard parallel models can be used to account for the data. Recall 
that the total completion times are iid in a standard parallel model. 
The experimenter records the total completion time of each recalled 
word, which are denoted as 𝕋/,⋯ , 𝕋1. Let us assume each total 
completion time follows the Weibull distribution: 

𝑓 𝕋% = 𝑘𝑢(𝑢𝕋%)�3/exp − 𝑢𝕋%
� , 

where 𝑗 ∈ 1,⋯ , 𝑛 . The likelihood function can be written as 
𝐿 = 𝑓 𝕋/ 𝑓 𝕋0 ⋯𝑓 𝕋1 . 

One can use maximum likelihood method to estimate the parameters 
𝑘 and 𝑢 for the Weibull distribution. We expect that the estimated 
value of 𝑘 is less than 1, which is consistent with the prediction of 
Theorem 7 and Corollary 8. 
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